Chapter Overview

• Basic Microcomputer Design
• Instruction Execution Cycle
• Addressable Memory
• Registers
Basic Microcomputer Design

- clock synchronizes CPU operations
- control unit (CU) coordinates sequence of execution steps
- ALU performs arithmetic and bitwise processing
Instruction Execution Cycle

- Fetch
- Decode
- Fetch operands
- Execute
- Store output
Addressable Memory

- Protected mode
 - 4 GB
 - 32-bit address
 - MS Windows, Linux

- Real-address and Virtual-8086 modes
 - 1 MB space
 - 20-bit address
 - MS-DOS
General-Purpose Registers

Named storage locations inside the CPU, optimized for speed.

32-bit General-Purpose Registers

<table>
<thead>
<tr>
<th>EAX</th>
<th>EBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBX</td>
<td>ESP</td>
</tr>
<tr>
<td>ECX</td>
<td>ESI</td>
</tr>
<tr>
<td>EDX</td>
<td>EDI</td>
</tr>
</tbody>
</table>

16-bit Segment Registers

<table>
<thead>
<tr>
<th>EFLAGS</th>
<th>CS</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIP</td>
<td>SS</td>
<td>FS</td>
</tr>
<tr>
<td></td>
<td>DS</td>
<td>GS</td>
</tr>
</tbody>
</table>
Accessing Parts of Registers

- Use 8-bit name, 16-bit name, or 32-bit name
- Applies to EAX, EBX, ECX, and EDX

<table>
<thead>
<tr>
<th>32-bit</th>
<th>16-bit</th>
<th>8-bit (high)</th>
<th>8-bit (low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAX</td>
<td>AX</td>
<td>AH</td>
<td>AL</td>
</tr>
<tr>
<td>EBX</td>
<td>BX</td>
<td>BH</td>
<td>BL</td>
</tr>
<tr>
<td>ECX</td>
<td>CX</td>
<td>CH</td>
<td>CL</td>
</tr>
<tr>
<td>EDX</td>
<td>DX</td>
<td>DH</td>
<td>DL</td>
</tr>
</tbody>
</table>
Index and Base Registers

• Some registers have only a 16-bit name for their lower half:

<table>
<thead>
<tr>
<th>32-bit</th>
<th>16-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESI</td>
<td>SI</td>
</tr>
<tr>
<td>EDI</td>
<td>DI</td>
</tr>
<tr>
<td>EBP</td>
<td>BP</td>
</tr>
<tr>
<td>ESP</td>
<td>SP</td>
</tr>
</tbody>
</table>
Some Specialized Register Uses

• General-Purpose
 – EAX – accumulator
 – ECX – loop counter
 – ESP – stack pointer
 – ESI, EDI – index registers (source, destination)
 – EBP – extended frame pointer (stack)

• Segment
 – CS – code segment
 – DS – data segment
 – SS – stack segment
 – ES, FS, GS – additional segments

• EIP – instruction pointer

• EFLAGS
 – status and control flags, each flag is a single binary bit
Status Flags

• Carry
 – unsigned arithmetic out of range
• Overflow
 – signed arithmetic out of range
• Sign
 – result is negative
• Zero
 – result is zero
• Auxiliary Carry
 – carry from bit 3 to bit 4
• Parity
 – sum of 1 bits is an even number
Floating-Point, MMX, XMM Registers

- Eight 80-bit floating-point data registers
 - ST(0), ST(1), ..., ST(7)
 - used for all floating-point arithmetic

- Eight 64-bit MMX registers

- Eight 128-bit XMM registers for single-instruction multiple-data (SIMD) operations